1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
// Copyright 2020 ChainSafe Systems
// SPDX-License-Identifier: Apache-2.0

//! Serialization for BinProt following the standard serde module layout

use crate::caml_hash_variant;
use crate::error::{Error, Result};
use crate::WriteBinProtExt;
use serde::ser;
use serde::Serialize;

/// Serializer for writing BinProt bytes to a writer
pub struct Serializer<W> {
    writer: W,
}

impl<W> Serializer<W> {
    /// Create a new serializer given a writer
    pub fn new(writer: W) -> Self {
        Self { writer }
    }
}

impl<W> Serializer<W>
where
    W: std::io::Write,
{
    fn write(&mut self, buf: &[u8]) -> Result<()> {
        self.writer.write_all(buf)?;
        Ok(())
    }

    fn write_byte(&mut self, b: u8) -> Result<()> {
        self.write(&[b])
    }

    // This can be called to serialize a Polyvar which has a 4 byte
    // tag OR a variant index which is 1-2 bytes. We assume if they fit into a single byte then they
    // are an index and if they are larger than 1 byte they are a polyvar.
    // IMPORTANT: This could bug out in the case that a polyvar hash is zero in all places except the lowest byte.
    // The probability of this happening is vanishingly small but something to be aware of.
    fn write_variant_index_or_tag(&mut self, name: &str, variant: &str, index: u32) -> Result<()> {
        if name == "Polyvar" {
            self.writer
                .bin_write_polyvar_tag(caml_hash_variant(variant))?;
        } else if let Ok(b) = check_variant_index(index) {
            // it is a sum variant
            self.writer.bin_write_variant_index(b)?;
        } else {
            // assume it is a Polyvar tagged variant
            self.writer.bin_write_polyvar_tag(index)?;
        }
        Ok(())
    }
}

/// Convenience function, creates  serializer and uses it to write the given value
/// to the writer
pub fn to_writer<W, T>(writer: &mut W, value: &T) -> Result<()>
where
    W: std::io::Write,
    T: Serialize,
{
    value.serialize(&mut Serializer::new(writer))
}

impl<'a, W> ser::Serializer for &'a mut Serializer<W>
where
    W: std::io::Write,
{
    // The output type produced by this `Serializer` during successful
    // serialization. Most serializers that produce text or binary output should
    // set `Ok = ()` and serialize into an `io::Write` or buffer contained
    // within the `Serializer` instance, as happens here. Serializers that build
    // in-memory data structures may be simplified by using `Ok` to propagate
    // the data structure around.
    type Ok = ();

    // The error type when some error occurs during serialization.
    type Error = Error;

    // Associated types for keeping track of additional state while serializing
    // compound data structures like sequences and maps. In this case no
    // additional state is required beyond what is already stored in the
    // Serializer struct.
    type SerializeSeq = Self;
    type SerializeTuple = Self;
    type SerializeTupleStruct = Self;
    type SerializeTupleVariant = Self;
    type SerializeMap = Self;
    type SerializeStruct = Self;
    type SerializeStructVariant = Self;

    // the spec defines booleans be written as:
    // false  ->  0x00
    // true   ->  0x01
    fn serialize_bool(self, v: bool) -> Result<()> {
        self.writer.bin_write_bool(v)?;
        Ok(())
    }

    // All integers by default get mapped to the Integer bin_prot
    fn serialize_i8(self, v: i8) -> Result<()> {
        self.writer.bin_write_integer(v)?;
        Ok(())
    }

    fn serialize_i16(self, v: i16) -> Result<()> {
        self.writer.bin_write_integer(v)?;
        Ok(())
    }

    fn serialize_i32(self, v: i32) -> Result<()> {
        self.writer.bin_write_integer(v)?;
        Ok(())
    }

    fn serialize_i64(self, v: i64) -> Result<()> {
        self.writer.bin_write_integer(v)?;
        Ok(())
    }

    fn serialize_u8(self, v: u8) -> Result<()> {
        self.write_byte(v)?;
        Ok(())
    }

    fn serialize_u16(self, v: u16) -> Result<()> {
        self.writer.bin_write_integer(v)?;
        Ok(())
    }

    fn serialize_u32(self, v: u32) -> Result<()> {
        self.writer.bin_write_integer(v)?;
        Ok(())
    }

    fn serialize_u64(self, v: u64) -> Result<()> {
        // Requires cast to i64 as u64 does not implement Into<i64>
        // This is because a u64 can hold larger positive values than an i64 as it
        // doesn't require reserving the sign bit.
        // This is ok to do as it is never compared with a value larger than 0x80000000
        // and it is cast back to a u64 before it is serialized. Just something to be aware of.
        self.writer.bin_write_integer(v as i64)?;
        Ok(())
    }

    fn serialize_f32(self, v: f32) -> Result<()> {
        self.writer.bin_write_float32(&v)?;
        Ok(())
    }

    fn serialize_f64(self, v: f64) -> Result<()> {
        self.writer.bin_write_float64(&v)?;
        Ok(())
    }

    // Chars are ascii encoded and should be 1 byte
    fn serialize_char(self, v: char) -> Result<()> {
        self.writer
            .bin_write_char(v)
            .map(|_| ())
            .map_err(Into::into)
    }

    // First the length of the string is written as a Nat0 (in characters?)
    // Then the bytes of the string verbatim
    fn serialize_str(self, v: &str) -> Result<()> {
        self.writer.bin_write_nat0(v.len() as u64)?;
        self.write(v.as_bytes())
    }

    // This must simply write the bytes to the output as is
    // The custom implementations for different integer types
    // depends on this
    fn serialize_bytes(self, v: &[u8]) -> Result<()> {
        self.write(v)
    }

    // An absent optional is represented as a unit or zero byte
    fn serialize_none(self) -> Result<()> {
        self.writer.bin_write_unit()?;
        Ok(())
    }

    // A present optional is represented as a 0x01 byte
    // followed by the encoding of the value
    fn serialize_some<T>(self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        self.write_byte(0x01)?;
        value.serialize(self)
    }

    // In Serde, unit means an anonymous value containing no data.
    // This is a zero byte
    fn serialize_unit(self) -> Result<()> {
        self.writer.bin_write_unit()?;
        Ok(())
    }

    // Unit struct means a named value containing no data.
    fn serialize_unit_struct(self, _name: &'static str) -> Result<()> {
        self.serialize_unit()
    }

    // Newtype struct are like tuple structs with a single value
    // Just serialize the contained value
    fn serialize_newtype_struct<T>(self, _name: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(self)
    }

    // Now we get to the serialization of compound types.
    //
    // For lists and arrays the length is written out as a Nat0.t first,
    // followed by all values in the same order as in the data structure.
    // This function only handles writing of the first element
    fn serialize_seq(self, len: Option<usize>) -> Result<Self::SerializeSeq> {
        if let Some(len) = len {
            // write the output length first
            self.writer.bin_write_nat0(len as u64)?;
            Ok(self) // pass self as the handler for writing the elements
        } else {
            Err(Error::SeqSizeNotProvided)
        }
    }

    // Values in tuples and records are written out one after the other in the order
    // specified in the type definition.
    // Polymorphic record fields are supported unless a value of the type bound
    // by the field were accessed, which would lead to an exception.
    fn serialize_tuple(self, _len: usize) -> Result<Self::SerializeTuple> {
        Ok(self)
    }

    // Tuple structs look just like sequences in bin_prot.
    fn serialize_tuple_struct(
        self,
        _name: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeTupleStruct> {
        Ok(self)
    }

    // First the size of the hash table is written out as a Nat0.t.
    // Then the writer iterates over each binding in the hash table
    // and writes out the key followed by the value.
    fn serialize_map(self, _len: Option<usize>) -> Result<Self::SerializeMap> {
        unimplemented!();
    }

    fn serialize_struct(self, _name: &'static str, _len: usize) -> Result<Self::SerializeStruct> {
        Ok(self)
    }

    // Variants/Enums
    //
    // // Variants refer to the different possibilities of enums that hold data
    // e.g. enum Message {
    //     Quit,                          // unit variant
    //     ChangeColor(i32, i32, i32),    // tuple variant
    //     Move { x: i32, y: i32 },       // struct variant
    // }
    // In each of these cases the index of the variant, n, is written out
    // first followed by the data
    fn serialize_unit_variant(
        self,
        name: &'static str,
        variant_index: u32,
        variant: &'static str,
    ) -> Result<()> {
        self.write_variant_index_or_tag(name, variant, variant_index)
    }

    fn serialize_tuple_variant(
        self,
        name: &'static str,
        variant_index: u32,
        variant: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeTupleVariant> {
        self.write_variant_index_or_tag(name, variant, variant_index)?;
        Ok(self)
    }

    fn serialize_struct_variant(
        self,
        name: &'static str,
        variant_index: u32,
        variant: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeStructVariant> {
        self.write_variant_index_or_tag(name, variant, variant_index)?;
        Ok(self)
    }

    // These are enum variants like Some(value)
    fn serialize_newtype_variant<T>(
        self,
        name: &'static str,
        variant_index: u32,
        variant: &'static str,
        value: &T,
    ) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        self.write_variant_index_or_tag(name, variant, variant_index)?;
        value.serialize(self)
    }
}

// The following 7 impls deal with the serialization of compound types like
// sequences and maps. Serialization of such types is begun by a Serializer
// method and followed by zero or more calls to serialize individual elements of
// the compound type and one call to end the compound type.

// This impl is SerializeSeq so these methods are called after `serialize_seq`
// is called on the Serializer.
impl<'a, W> ser::SerializeSeq for &'a mut Serializer<W>
where
    W: std::io::Write,
{
    type Ok = ();
    type Error = Error;

    // Serialize a single element of the sequence.
    fn serialize_element<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

// Tuples are serialized just as the elements written consecutively
impl<'a, W> ser::SerializeTuple for &'a mut Serializer<W>
where
    W: std::io::Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_element<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

// Same thing but for tuple structs.
impl<'a, W> ser::SerializeTupleStruct for &'a mut Serializer<W>
where
    W: std::io::Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

// Some `Serialize` types are not able to hold a key and value in memory at the
// same time so `SerializeMap` implementations are required to support
// `serialize_key` and `serialize_value` individually.
//
// There is a third optional method on the `SerializeMap` trait. The
// `serialize_entry` method allows serializers to optimize for the case where
// key and value are both available simultaneously.
// This is no more efficient in this case
impl<'a, W> ser::SerializeMap for &'a mut Serializer<W>
where
    W: std::io::Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_key<T>(&mut self, key: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        key.serialize(&mut **self)
    }

    fn serialize_value<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

// Structs are written exactly the same as Tuples
// Field values are written one after the other in order
// keys are ignored
impl<'a, W> ser::SerializeStruct for &'a mut Serializer<W>
where
    W: std::io::Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, _key: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a, W> ser::SerializeTupleVariant for &'a mut Serializer<W>
where
    W: std::io::Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

impl<'a, W> ser::SerializeStructVariant for &'a mut Serializer<W>
where
    W: std::io::Write,
{
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, _key: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        Ok(())
    }
}

fn check_variant_index(index: u32) -> Result<u8> {
    index
        .try_into()
        .map_err(|_| Error::VariantIndexTooLarge { index })
}