1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// This file is part of Substrate.

// Copyright (C) 2019-2021 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! Utilities used by all backends

use crate::error::{Error, Result};
use sp_wasm_interface::Pointer;
use std::ops::Range;

/// Construct a range from an offset to a data length after the offset.
/// Returns None if the end of the range would exceed some maximum offset.
pub fn checked_range(offset: usize, len: usize, max: usize) -> Option<Range<usize>> {
	let end = offset.checked_add(len)?;
	if end <= max {
		Some(offset..end)
	} else {
		None
	}
}

/// Provides safe memory access interface using an external buffer
pub trait MemoryTransfer {
	/// Read data from a slice of memory into a newly allocated buffer.
	///
	/// Returns an error if the read would go out of the memory bounds.
	fn read(&self, source_addr: Pointer<u8>, size: usize) -> Result<Vec<u8>>;

	/// Read data from a slice of memory into a destination buffer.
	///
	/// Returns an error if the read would go out of the memory bounds.
	fn read_into(&self, source_addr: Pointer<u8>, destination: &mut [u8]) -> Result<()>;

	/// Write data to a slice of memory.
	///
	/// Returns an error if the write would go out of the memory bounds.
	fn write_from(&self, dest_addr: Pointer<u8>, source: &[u8]) -> Result<()>;
}

/// Safe wrapper over wasmi memory reference
pub mod wasmi {
	use super::*;

	/// Wasmi provides direct access to its memory using slices.
	///
	/// This wrapper limits the scope where the slice can be taken to
	#[derive(Debug, Clone)]
	pub struct MemoryWrapper(::wasmi::MemoryRef);

	impl MemoryWrapper {
		/// Take ownership of the memory region and return a wrapper object
		pub fn new(memory: ::wasmi::MemoryRef) -> Self {
			Self(memory)
		}

		/// Clone the underlying memory object
		///
		/// # Safety
		///
		/// The sole purpose of `MemoryRef` is to protect the memory from uncontrolled
		/// access. By returning the memory object "as is" we bypass all of the checks.
		///
		/// Intended to use only during module initialization.
		pub unsafe fn clone_inner(&self) -> ::wasmi::MemoryRef {
			self.0.clone()
		}
	}

	impl super::MemoryTransfer for MemoryWrapper {
		fn read(&self, source_addr: Pointer<u8>, size: usize) -> Result<Vec<u8>> {
			self.0.with_direct_access(|source| {
				let range = checked_range(source_addr.into(), size, source.len())
					.ok_or_else(|| Error::Other("memory read is out of bounds".into()))?;

				Ok(Vec::from(&source[range]))
			})
		}

		fn read_into(&self, source_addr: Pointer<u8>, destination: &mut [u8]) -> Result<()> {
			self.0.with_direct_access(|source| {
				let range = checked_range(source_addr.into(), destination.len(), source.len())
					.ok_or_else(|| Error::Other("memory read is out of bounds".into()))?;

				destination.copy_from_slice(&source[range]);
				Ok(())
			})
		}

		fn write_from(&self, dest_addr: Pointer<u8>, source: &[u8]) -> Result<()> {
			self.0.with_direct_access_mut(|destination| {
				let range = checked_range(dest_addr.into(), source.len(), destination.len())
					.ok_or_else(|| Error::Other("memory write is out of bounds".into()))?;

				destination[range].copy_from_slice(source);
				Ok(())
			})
		}
	}
}

// Routines specific to Wasmer runtime. Since sandbox can be invoked from both
/// wasmi and wasmtime runtime executors, we need to have a way to deal with sanbox
/// backends right from the start.
#[cfg(feature = "wasmer-sandbox")]
pub mod wasmer {
	use super::checked_range;
	use crate::error::{Error, Result};
	use sp_wasm_interface::Pointer;
	use std::{cell::RefCell, convert::TryInto, rc::Rc};

	/// In order to enforce memory access protocol to the backend memory
	/// we wrap it with `RefCell` and encapsulate all memory operations.
	#[derive(Debug, Clone)]
	pub struct MemoryWrapper {
		buffer: Rc<RefCell<wasmer::Memory>>,
	}

	impl MemoryWrapper {
		/// Take ownership of the memory region and return a wrapper object
		pub fn new(memory: wasmer::Memory) -> Self {
			Self { buffer: Rc::new(RefCell::new(memory)) }
		}

		/// Returns linear memory of the wasm instance as a slice.
		///
		/// # Safety
		///
		/// Wasmer doesn't provide comprehensive documentation about the exact behavior of the data
		/// pointer. If a dynamic style heap is used the base pointer of the heap can change. Since
		/// growing, we cannot guarantee the lifetime of the returned slice reference.
		unsafe fn memory_as_slice(memory: &wasmer::Memory) -> &[u8] {
			let ptr = memory.data_ptr() as *const _;
			let len: usize =
				memory.data_size().try_into().expect("data size should fit into usize");

			if len == 0 {
				&[]
			} else {
				core::slice::from_raw_parts(ptr, len)
			}
		}

		/// Returns linear memory of the wasm instance as a slice.
		///
		/// # Safety
		///
		/// See `[memory_as_slice]`. In addition to those requirements, since a mutable reference is
		/// returned it must be ensured that only one mutable and no shared references to memory
		/// exists at the same time.
		unsafe fn memory_as_slice_mut(memory: &wasmer::Memory) -> &mut [u8] {
			let ptr = memory.data_ptr();
			let len: usize =
				memory.data_size().try_into().expect("data size should fit into usize");

			if len == 0 {
				&mut []
			} else {
				core::slice::from_raw_parts_mut(ptr, len)
			}
		}

		/// Clone the underlying memory object
		///
		/// # Safety
		///
		/// The sole purpose of `MemoryRef` is to protect the memory from uncontrolled
		/// access. By returning the memory object "as is" we bypass all of the checks.
		///
		/// Intended to use only during module initialization.
		///
		/// # Panics
		///
		/// Will panic if `MemoryRef` is currently in use.
		pub unsafe fn clone_inner(&mut self) -> wasmer::Memory {
			// We take exclusive lock to ensure that we're the only one here
			self.buffer.borrow_mut().clone()
		}
	}

	impl super::MemoryTransfer for MemoryWrapper {
		fn read(&self, source_addr: Pointer<u8>, size: usize) -> Result<Vec<u8>> {
			let memory = self.buffer.borrow();

			let data_size = memory.data_size().try_into().expect("data size does not fit");

			let range = checked_range(source_addr.into(), size, data_size)
				.ok_or_else(|| Error::Other("memory read is out of bounds".into()))?;

			let mut buffer = vec![0; range.len()];
			self.read_into(source_addr, &mut buffer)?;

			Ok(buffer)
		}

		fn read_into(&self, source_addr: Pointer<u8>, destination: &mut [u8]) -> Result<()> {
			unsafe {
				let memory = self.buffer.borrow();

				// This should be safe since we don't grow up memory while caching this reference
				// and we give up the reference before returning from this function.
				let source = Self::memory_as_slice(&memory);

				let range = checked_range(source_addr.into(), destination.len(), source.len())
					.ok_or_else(|| Error::Other("memory read is out of bounds".into()))?;

				destination.copy_from_slice(&source[range]);
				Ok(())
			}
		}

		fn write_from(&self, dest_addr: Pointer<u8>, source: &[u8]) -> Result<()> {
			unsafe {
				let memory = self.buffer.borrow_mut();

				// This should be safe since we don't grow up memory while caching this reference
				// and we give up the reference before returning from this function.
				let destination = Self::memory_as_slice_mut(&memory);

				let range = checked_range(dest_addr.into(), source.len(), destination.len())
					.ok_or_else(|| Error::Other("memory write is out of bounds".into()))?;

				destination[range].copy_from_slice(source);
				Ok(())
			}
		}
	}
}